Generating Ultra Long Reads on Oxford Nanopore MinION/GridION/PromethION

03/01/2020

Dr. Kelvin Liu kliu@circulomics.com

DNA Quality

For long reads, DNA quality is paramount.

DNA Quality

Size Purity

Damage

Library Prep!

ACGT

Sequence Metrics

Read Length Throughput QV

Nanobind Magnetic Disks

Nanostructured magnetic disks for rapid HMW and UHMW DNA extraction

High Surface Area + Low Shear Force

Rapid Bind, Wash, and Elute

Specifically Optimized for Long-Range Technologies

HMW DNA Extraction (50 – 300+ kb)

Cells, Bacteria, Blood

Plants

Tissues

UHMW DNA Extraction (50 kb - 1+ Mb)

Recommended for:

22 Hr CHEF Gel

72 Hr CHEF Gel

Bionano Optical Map

Whale Watching On ONT – Josh Quick Protocol

Generate 100 kb - 1 + Mb reads (whales). Longest read to date = 2.27 Mb ONT Rapid Sequencing Kit with high DNA concentration with low transposase = ultra long reads

Bigger DNA = More Whales

Used modified Quick Protocol to test effect of DNA size.

Read Length N50 (bp)	33.7 kb	48.5 kb	60.7 kb
Throughput	2.9 Gb	3.1 Gb	1.9 Gb
Data >100 kb	13%	25%	34%
Reads >1 Mb	0	2	4
Longest Read (Mb)	0.78	1.1	1.3

Whale Watching Challenges

2 major challenges make this protocol difficult for widespread adoption

- 1. High concentrations of megabase DNA = Very viscous
 - Extraction changes
 - Library prep changes
 - 2. Low throughput and few whales
 - Library prep changes
 - Sequencing changes

Extraction Changes to Reduce Sample Viscosity

Made tweaks to the Lysis and Binding chemistry to reduce viscosity of megabase DNA without affecting size

Megabase Sized DNA

New chemistry reduces sample viscosity but maintains megabase sized DNA.

E. coli / L. monocytogenes

Even more whales?

 $+ 1 \mu L RAP$

Remove free adapters and buffer exchange

A Small Pod of GM12878 Whales

Improved mixing and extraction leads to large increase in ultra long reads

Generated 2.1 Mb unfused read

	Read Length N50	Number of Mapped Whales	Longest Mapped Read
Before Whale Watch	139 kb	7	2.1 Mb
After Whale Watch	179 kb	13	2.1 Mb

Fused + Unfused Whales			
Mapped Read Length	Chromosome		
2.1	3		
1.7*	-		
1.4 x 2	7, 12		
1.3	8		
1.2	3		
1.1 x 6	2, 4, 5, 7, 16, 20		
1.0	2		

A Small Pod of *E. coli* Whales

Comparable results seen with bacteria

	Read Length N50	Number of Mapped Whales	Longest Mapped Read
Before Whale Watch	134 kb	6	1.4 Mb
After Whale Watch	175 kb	15	1.6 Mb

Fused + Unfused Whales		
Mapped Read Length		
1.6		
1.5		
1.3 x 3		
1.2 x 6		
1.1 x 4		

Longest Nanopore Read to Date?

Tested the protocol on human whole blood

Generated 2.44 Mb fused read (1.1 + 0.85 + 0.5)

Read Length Histogram Basecalled Bases

	Read Length N50	Number of Mapped Whales	Longest Mapped Read
Before Whale Watch	168 kb	16	1.8 Mb
After Whale Watch	193 kb	28	2.44 Mb

Fused + Unfused Whales		
Mapped Read Length	Chromosome	
2.44	13	
2.2	1	
2.0	2	
1.7 x 3	2, 2, 3, 4	
1.6	3	
1.5 x 4	3, 6, 7, 18	
1.4 x 2	2, 16	
1.3 x 3	2, 7, 8	
1.2 x 3	2, 4, 4	
1.1 x 4	6, 11, 15, 18	
1.0 x 4	8, 11, 14, 19	

Increasing Throughput – Nuclease Flush

A Medium Pod of Whales

Nuclease flush increased throughput by 30%.

36 whales. 65% data >100 kb. 40% data >200 kb.

Read Length Histogram Basecalled Bases

	Read Length N50	Number of Mapped Whales	Longest Mapped Read
Before Whale Watch	134 kb	16	1.7 Mb
After Whale Watch	150 kb	36	1.9 Mb

Cumulative Output Bases

Fused + Unfused Whales		
Mapped Read Length	Chromosome	
1.9	2	
1.7	7	
1.6	15	
1.5 x 3	14, 14, 8	
1.4 x 3	4, 6, 17	
1.3 x 6	5, 5, 10, 11, 13, 13	
1.2 x 6	6, 7, 7, 13, 14, 17	
1.1 x 10	3, 3, 4, 4, 6, 10, 12, 17, 20, 21	
1.0 x 5	1, 1, 2, 16, X	

: ! † ! † : : ! † ! † : : ! † ! † :

Mapping Ultra Long Reads

Massive differences in scale between 1.5 Mb vs. 500 kb vs. 50 kb reads

Increasing Throughput - PromethION

RAD004 chemistry is not officially supported for PromethION yet.

However, after Nanobind purification + buffer exchange RAD004 library = LSK109 library

Towards A Large Pod of Whales

Protocol biased toward higher throughput (3X FRA).

14% data (3.4 Gb) in reads >200 kb. Even higher throughput w/ 3rd library?

Conclusion

New extraction chemistry -> Reduced viscosity and improved mixing

• Fragmentation performed at low concentration -> Improved mixing and reaction efficiency

Nuclease flush -> Higher throughput

Reaction purification -> Scales to PromethION

Acknowledgements

Questions?

Jeffrey Burke Duncan Kilburn Renee Fedak Kelvin Liu

Simon Mayes David Stoddart Michelle Hiscutt Rosemary Dokos

Winston Timp

W
UNIVERSITY of
WASHINGTON
Glennis Logsdon

Josh Quick

Matt Loose

