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RNA-seq is an important analytical technique that leverages the 
capacity of high-throughput sequencing instruments to quantita-
tively sample a population of RNA molecules with a large number 
of ‘reads’ or parallel reactions on discrete templates1,2. Depending 
on experimental goals, sample types and read depths, results from 
RNA-seq data can be similar or superior to those from microarray 
data3–5. However, each sequencing platform has unique aspects of 
library synthesis, sequencing, alignment and data processing6–9. Thus, 
many questions remain about RNA-seq in regards to interoperability 
between platforms, cross-site reproducibility, bioinformatics methods 
and the sources of variance in results with both existing and emerging 
protocols, such as those for degraded RNA.

Notably, prior work comparing microarray platforms and methods 
showed high levels of inter-platform concordance for the ability to 
detect differentially expressed genes. The Microarray Quality Control 

(MAQC) Consortium landmark study10 examined the degree of vari-
ance within and across many different microarray platforms and found 
similar coefficients of variation between platforms. The MAQC data 
also provided an important benchmark for the application of micro-
array technologies to clinical assays. For high-throughput sequencing 
platforms, however, very little data exist about cross-site variation of 
expression measures. Only two inter-site variation studies are pub-
licly available: the Sequencing Qualtiy Control (SEQC)/MAQC-III  
Consortium11 study and the GEUVADIS Consortium study12. These 
studies were either limited to one platform or did not assess some 
newer RNA-seq methods that are now widely used. Moreover, impor-
tant RNA profiling parameters, such as differential expression and 
splice variant detection, have not been consistently evaluated. Thus, 
these studies do not answer key questions about the degree of con-
cordance for RNA-seq across platforms and methods and also about 
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the read depth, type and length of sequence reads required to fully 
characterize a sample with current techniques. Moreover, RNA-seq is 
an extremely useful method for exploring the expression of sequence 
variants, detecting novel RNAs and for discriminating between tran-
script splicing isoforms13–20, but there is no gold standard of reference 
data on the dynamic range of differential expression and splicing that 
includes different sample preparation protocols, instruments and data 
analysis strategies.

To address this challenge, members of the Association of 
Biomolecular Resource Facilities (ABRF)21 designed and  
conducted the first phase of a large-scale ABRF-NGS study with a 
focus on RNA-seq. The goals of the ABRF-NGS study are to evalu-
ate the performance of high-throughput sequencing platforms and 
to identify optimal methods and best practices. A wide range of 
variables was evaluated, including library preparation methods 
(poly-A–enriched and ribo-depleted), size-specific fractionation 
(1, 2 and 3 kb) and RNA integrity (using heat, RNase A and sonica-
tion to degrade the RNA). The latter variable was chosen to mimic 
some of the damaging effects of tissue fixation with formalin, 
which is a well-recognized issue for RNA profiling of formalin-
fixed, paraffin-embedded (FFPE) clinical specimens22–24. Finally, 
we leveraged a data set of 18,124 PrimePCR reactions, also used 
by the SEQC Consortium11. These primers’ data were compared 
to the exact loci in the transcriptome coordinates of GENCODE 
v12, which is known to enable a more accurate comparison than the 
overall gene counts25. Both platform-agnostic and platform-spe-
cific sequence aligners were also compared to support the validity  
of our analyses. Taken together, these data represent a broad  
cross-platform characterization of widely used RNA standards and 
to our knowledge provide the largest comprehensive comparison 

of results from degraded, full-length and size-selected RNA across 
sequencing platforms and protocols.

RESULTS
Platforms, RNA samples and sequencing protocols
Although comparisons of high-throughput sequencing platforms 
and sample preparation protocols have been reported in past  
studies6,26–28, no other study has been conducted using five plat-
forms and two standardized RNA samples replicated at multiple sites  
(Fig. 1). Platforms evaluated included the Illumina HiSeq 2000/2500, 
Roche 454 GS FLX+, Life Technologies Ion Personal Genome Machine 
(PGM) and Proton, and the Pacific Biosciences RS (PacBio)6,8,29. Data 
were generated and analyzed by the members of five ABRF Research 
Groups, including 25 core facilities at 20 different institutions (Fig. 1 
and Supplementary Table 1). Additional data from an Illumina MiSeq 
v2 instrument were used to compare metrics derived from different 
read lengths from the same Illumina library preparation and sequenc-
ing methods. Detection of differential RNA abundance was evaluated  
using two commercially available and very distinct RNA samples:  
A, RNA from cancer cell lines; B, RNA from pooled normal human 
brain tissues; and two predefined mixtures of these samples (C: 75% 
A + 25% B; D: 25% A + 75% B). All standardized RNA samples also 
contained synthetic RNA spike-ins from the External RNA Control 
Consortium (ERCC)10,30,31. Results from high-quality RNA on the 
Illumina HiSeq 2500 platform were compared to results on the same 
platform from RNAs degraded using three degradation conditions: 
heat, RNase and sonication. The RNA reference samples were degraded 
to a RIN (RNA integrity number) of 3 or less. In addition, results from 
ribosomal RNA-depleted and poly-A–enriched libraries from intact 
RNA were compared using the Illumina HiSeq 2500 platform.
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Figure 1 Experimental design and sequencing platforms. (a) Two standard RNA samples (A = Universal Human Reference RNA and B = Human Brain 
Reference RNA) were combined with two sets of synthetic RNAs (ERCCs) to prepare a set of samples to be sequenced on five platforms: Illumina (ILMN) 
HiSeq 2000/2500, Life Technologies Personal Genome Machine (PGM), Life Technologies Proton (PRO), Pacific Biosciences (PacBio) RS (PAC), and 
the Roche 454 GS FLX+. Additional RNA samples were also generated: samples C and D were prepared as defined mixtures of A and B, while other 
aliquots of A and B were degraded by three methods. All these additional samples were ribo-depleted for RNA-seq on the HiSeq platform. The number 
of technical replicates (×2, ×3 or ×4) of each sample set is indicated for each platform and method. The number of stacked rectangles indicates the 
number of sites performing the same experiment. (b) Stacked bar plots of the sequencing platforms’ mismatch rates (y axis) for single-base mismatches 
(white) and insertions/deletions (indels, gray) based on different aligners for each platform (x axis). Q10 (90% accuracy) and Q20 (99% accuracy) are 
shown as the top and bottom line, respectively. X axis indicates the platform name, with the aligner name in parentheses.
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To map the sequencing reads to the human genome (hg19), we 
used both vendor-recommended alignment algorithms and ‘universal’, 
 platform-agnostic aligners. For gene expression quantification, the fol-
lowing aligners were evaluated: STAR32 (agnostic), ELAND (HiSeq), 
TMAP (PGM and Proton), GSRM (454) and GMAP (PacBio). With 
the exception of ELAND, each platform-specific algorithm produced 
better mapping rates, gene-body coverage evenness and Spearman cor-
relations with PrimePCR quantification (Supplementary Tables 2–4)  
when compared to STAR applied uniformly across all platforms. 
However, the universal STAR alignments were used as input for shared 
junction detection (Supplementary Table 5), as these alignments 
always showed the lowest mapping error rate (Fig. 1). After map-
ping, additional processing for quantifying gene counts was performed 
using the open source r-make package (http://physiology.med.cornell.
edu/faculty/mason/lab/r-make/ and Online Methods) to calculate the 
reads and coverage for each gene feature based on GENCODE (v12) 
annotation. Quality control data were generated using the fastQC 
package (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) 
to calculate a large set of performance metrics for sequence quality, 
gene coverage, and transcriptome quantification and characterization 
for all platforms (Fig. 1 and Supplementary Figs. 1–23).

Base qualities, data quality and duplicate rates
Quality values (QV, a per base accuracy estimate) were calculated 
for all sample runs and for prealignment measures (Supplementary 
Figs. 1–6) and postalignment measures (Fig. 1b). Results ranged from 
Q10 (90% accuracy) to Q60 (99.9999% accuracy) across platforms 
(Supplementary Figs. 1–6) and revealed three notable trends. First, most 
platforms show a biased QV distribution in the first 1–16 bases, a known 
effect from the reverse transcriptase (RT) priming step33. This RT bias 
can also affect the observed GC content (Supplementary Figs. 7–11)  
and base-frequency data11,34,35 (Supplementary Figs. 12–17). Second, 
similar QV profiles were observed for samples A and B, and across  
different RNA size fractions. Third, although changes in library  

preparation techniques and sequencing chemistry for various plat-
forms can affect the QVs, the largest increase in QVs came from the 
circular consensus sequencing for the PacBio data (Supplementary 
Fig. 2), where median QVs near 40 were observed, though with a wide 
range of variation. Thus, for most platforms, the ends of the reads are 
where most noise was observed, but lower QVs also occurred at the 
beginnings of the reads. This results in a source of bias and noise for 
RNA-seq data that appears in all platforms and is usually addressed 
by appropriate sequence trimming.

The QVs for each base of a read, as well as the read length, align-
ment method and reference sequence quality, can all affect mapping 
accuracy. To estimate the platform-specific and aligner-specific impact 
of the sequencing error rate on alignment, we calculated the number of 
mismatches relative to the hg19 human reference genome, normalized 
by total mapped bases, for two aligners for each platform (Fig. 1b). 
These data showed that a tradeoff between higher mapping rate and 
accuracy can occur for RNA-seq, such as the increased mapping rate 
with TMAP and GSRM versus STAR (Supplementary Table 2) that led 
to a higher empirically derived error rate (Fig. 1b). The most common 
type of mismatch was single-base substitutions, with frequencies rang-
ing from 0.6 to 7.1% across all platforms. Insertion/deletion (indel) type 
mismatch rates were also highly variable between platforms, spanning 
0.017–4.4% of all mismatches observed. Moreover, for all platforms, the 
reported QVs were higher than the empirically derived QVs based on 
sequence mismatches, similar to the QV-inflation observed for DNA 
sequencing in the 1000 Genomes Project and GATK36,37.

Previous work in RNA-seq has found that duplicate reads may be 
a confounding factor in data analysis because reads with exactly the 
same start and end may arise from clonal copies produced during 
library amplification rather than from independently transcribed 
RNAs in the biological sample8,34. However, unlike DNA sequencing 
of large diploid genomes, RNA-seq is expected to produce some reads 
from highly expressed transcripts that begin at the same nucleotide 
and are thus designated “duplicate.” An assessment of this question 
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over a range of read lengths has not been previously reported, but 
is facilitated in this study by RNA-seq of the same samples over a 
range of varying read lengths (Supplementary Figs. 19–23). The 
read length distributions revealed distinct types for variable-read 
platforms, including Gaussian (454) and “ski-jump” (Proton and 
PGM), and the expected uniform lengths for Illumina platforms. Yet, 
all platforms showed no more than 51% of reads as putative duplicates 
(Supplementary Fig. 24), with the 454 and PacBio platforms showing 
the fewest duplicates (12–20%). PacBio library construction does not 
include any amplification step of the final cDNA library, whereas the 
reduced duplication with 454 is likely because the amplification step 
takes place after template attachment to single beads, so individual 
molecules in the library have less chance to spawn multiple reads. For 
the other platforms, this analysis cannot distinguish whether observed 
duplicates are due to independent transcripts or are a consequence of 
library amplification, but future data sets based on these same samples 
will support investigation of this question.

Coverage of genes
Next we examined the normalized coverage of all GENCODE gene tran-
scripts from 5′ to 3′ termini for any bias in the number of mapped bases 

originating from different regions of the transcripts. Almost all sam-
ples showed a fairly similar distribution of coverage for genes (Fig. 2).  
Notably, the ribo-depleted RNA samples, whether degraded or not, 
consistently showed more uniform gene coverage than did poly-A–
selected libraries. The data also showed “banding” or altered coverage 
distributions, likely caused by the use of a different library kit version 
at one of the test sites (W). This indicates that gene coverage can be 
affected by platform and preparation-dependent factors, but aligners 
can also play a role (Supplementary Table 3). Finally, the highest and 
most uniform coverage of full-length transcripts came from preparing 
samples with enrichment for both the 3′ poly-A tail and an antibody 
for the 5′ methylguanylate cap (5′G cap), combined with long-read 
technology (see Online Methods for Pacific Biosciences).

Transcriptome profiling and splice junction detection
We investigated the ability of each platform to reproducibly detect and  
quantify genes and splice junctions across the transcriptome (Fig. 3). 
Data were restricted to genes that were observed at all test sites and 
in all technical replicates for each platform. The platforms showed a 
median range of 11–39% inter-site CV (coefficient of variation) in their 
quantification of detected genes using normalized gene expression  
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values (Fig. 3a and Online Methods), with HiSeq showing the low-
est median CV. The Spearman correlations of normalized transcript 
levels were measured for samples A and B on different platforms (454, 
HiSeq, Proton and PGM) across multiple sites for Fig. 3b; PacBio 
was not included because it displayed an (expected) low read count 
for many genes. The inter-platform correlation was high (correla-
tion coefficient greater than 0.83) for the same samples profiled on 
different platforms, and the intra-platform correlation was even 
higher (correlation coefficient greater than 0.86). Each platform was 
also compared to normalized expression data from an orthogonal  
quantification method (PrimePCR, Supplementary Fig. 25), and  
the Spearman correlations of the log2 fold differences were ranked  
as 454 < PGM < Proton, HiSeq, ranging from 0.83 to 0.89.

Next we examined the impact of read depth and length on transcript 
identification. A clear log-linear relationship was observed between 
sequence base depth and gene detection (Fig. 3d), showing that increas-
ing the depth of sequencing for any platform is a quick means to find 
more genes. Characterizations of splice junction detection efficiency 
and inter-platform agreement have not been previously reported, so 
to account for each platform’s different read lengths, the effect of total 
sequenced base depth (rather than read count) was examined for previ-
ously annotated and new, unannotated splicing. Splice junction profil-
ing showed an early plateau for detection of known junctions (Fig. 3e). 
The Proton, PGM and 454 platforms detected more known junctions 
despite fewer bases sequenced compared to Illumina HiSeq. However, a 
follow-up experiment with long-read Illumina MiSeq data (2 × 250 bp  
paired-end reads) showed a similar boost in junction identification 
(Supplementary Fig. 26), suggesting that splice junction detection 
is most affected by read length, rather than library preparation or 
sequencing chemistry. The ratio of the number of junctions detected 
as a function of total bases sequenced (junctions/Mb) revealed a wide 
range of values (Fig. 3f) but clearly demonstrated that longer reads 
are a more efficient way to capture junctions. This is reflected in the 
data from the long-read platforms and also in the comparison of the 
number of junctions detected in the Illumina HiSeq versus MiSeq data 
from two aliquots of the same library (22.6 junctions/Mb for HiSeq 
versus 33.9 junctions/Mb for MiSeq, Supplementary Fig. 26).

We also characterized the inter-platform agreement of known and 
novel junctions. The known GENCODE junctions (v12) showed 
higher inter-platform agreement, with most of these junctions 
detected by three or more platforms (Fig. 3g, left panel). However, 
unannotated junctions have lower concordance than known junc-
tions across platforms (Fig. 3g). An examination of these rare iso-
forms revealed that the lower detection agreement is likely due to 
their lower expression levels (Supplementary Fig. 27), but they 
also may represent platform-specific artifacts. Therefore, only 
unannotated splice junctions observed on at least three platforms 
(which still includes >20,000 junctions per sample) are reported in  
this analysis.

These cross-platform splicing data showed that the types of reads 
dramatically influenced each platform’s measure of low abundance 
transcripts. This effect was apparent for RNA splice isoforms such as 
SRP9 (Fig. 4a), suggesting that rare-isoform quantification benefits 
the most from greater read depths (such as from the Illumina HiSeq 
and Life Technologies Proton). However, uniformity of coverage across 
exons is improved with long-read technology such as PacBio (Fig. 4a 
and Supplementary Table 3), despite less read depth. An examination 
of the size-selected PacBio circular consensus sequencing libraries 
demonstrated that the poly-A+5′G cap enrichment method captured 
the full lengths of expressed transcripts (Supplementary Fig. 28), 
with the majority (90%) showing complete transcript sequences in the 
1–2 kb range or even longer. These results indicate that a combination 
of appropriate sample preparation and long reads can readily create 
cDNA profiles that approach the full-length sequences of mRNAs 
from complex samples, underlining the utility of long read platforms, 
despite the lower read depths they may produce38.

To examine the ability of each platform to detect differentially 
expressed genes (DEGs) (Fig. 4b, Supplementary Figs. 29–31), we 
used limma-voom39 to perform DEG analysis on the normalized 
counts for each platform. Although a majority of DEGs were observed 
by two or more methods, each produced unique DEGs at all statisti-
cal significance and fold-change cutoffs (Supplementary Figs. 30 
and 31). Thus, although high read–depth platforms showed greater 
DEG overlap, each platform produced unique subsets (from unique 
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systematic effects) of statistically significant DEGs (FDR < 0.05,  
fold change > 2, Online Methods), ranging from 6–11% of all called 
DEGs detected uniquely by a platform or preparation method 
(Fig. 4b, peripheral sets). These instruments span different chem-
istries, measurement techniques (optical versus electrical) and  
base-calling methods, all of which likely play roles in the system-spe-
cific noise profiles (Figs. 1–3 and Supplementary Figs. 1–24).

Influence of library preparation on transcriptome profiles
To examine other factors that affect DEG measurements, we prepared 
libraries using either poly-A enrichment or ribosomal RNA depletion 
of the standard samples, and then performed sequencing on the same 
Illumina HiSeq 2500 instrument. Identical aliquots of the standards 

(A, B, C and D) were separated into quadruplicate sets for library 
preparation. All replicate libraries were then sequenced in a multi-
plexed assay on a full Illumina flow cell. The ribo-depletion library 
method produced a read source distribution very different from the 
poly-A preparation method (Fig. 5a). The ribo-depleted libraries 
showed 40–47% of the bases mapping to introns versus 7–12% for 
poly-A RNA from the same sample (lower intronic reads were simi-
larly observed for poly-A RNA on the other platforms, Supplementary 
Fig. 32). Both methods produced fairly consistent measures of RNA 
abundance (fragments per kilobase of transcript per million mapped 
reads (FPKM), Online Methods), with a median FPKM difference 
of only 0.055 between all genes. However, more genes with lower 
levels of expression were observed with the ribo-depletion method, 
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whereas the poly-A libraries contained more highly expressed genes 
and 3′ untranslated regions (3′ UTR; Supplementary Fig. 33). As 
expected, the ribo-depleted libraries were enriched for noncoding 
RNAs, such as long noncoding RNAs and small nucleolar RNAs 
(Supplementary Table 6), whereas the poly-A libraries were enriched 
for protein-coding genes and mitochondrial genes (Supplementary 
Tables 6–8)40. Sequence annotations in GENCODE currently labeled 
as “intron” and other categories are likely to change as new noncoding 
RNAs (or new transcript classes) are identified.

However, few overall differences were observed between the poly-
A and ribo-depleted library preparations in gene quantification 
and detection of differentially expressed genes. Both data sets were 
evaluated using alignments from STAR and DEG calculations from 
limma-voom39, and surrogate variable analysis (sva) was applied for 
the detection of latent variables (Online Methods)41. A pairwise com-
parison of the average normalized gene expression across replicates 
of the two library types for the four standard samples showed high 
Spearman correlation coefficients (sample A: 0.91, B: 0.93, C: 0.92, D: 
0.93). The overall numbers of DEGs detected between the biologically 
distinct samples (A versus B, A versus D, etc.) were also consistent 
between library preparation methods (Fig. 5b,c). These DEG data 
were then compared to results from 802 TaqMan assays for these same 
RNA samples (GEO data set GSE5350)10. Both library types had simi-
lar accuracy as measured by Matthews correlation coefficient (MCC, 
Fig. 5d)42,43, which is a joint measure of the assay’s sensitivity and spe-
cificity. The corresponding DEGs without sva analysis show similar 
but slightly lower overlap percentage and MCC (Supplementary 
Fig. 33). The median MCC is 0.659 before sva and 0.678 after sva, with 
an average increase of 0.015. Furthermore, the percentage of shared 
DEGs ranges from 67–81% at FDR < 0.01 and fold change > 2, and 
similarly ranges from 68–81% after sva. However, the synthetic RNAs 
spiked into these samples (ERCC controls) performed slightly better 
in the ribo-depletion protocol than the poly-A–enrichment protocol 
(mean correlation coefficient = 0.91 and 0.82, respectively), although 
these ranges of correlation to TaqMan were similar to those observed  
for ERCCs sequenced on the PGM, where the mean correlation  
coefficient = 0.78 (Supplementary Figs. 34 and 35).

Impact of RNA degradation on transcriptome profiling
As poly-A and ribo-depleted gene quantifications were similar, we 
sought to test the effect of ribo-depletion on ‘low quality’ or degraded 
RNAs. The reference samples A and B were degraded using heat, soni-
cation or RNase-A until all samples showed a high level of degradation 
when evaluated on the Agilent Bioanlyzer 2100 (RIN < 3.0, Online 
Methods). Samples were ribo-depleted before library preparation and 
sequenced on the HiSeq platform at multiple sites. Multiple metrics 
indicated that the degraded RNA performed as well as the poly-A–
enriched or ribo-depleted libraries from intact RNA. First, sequencing 
of the degraded RNA, after ribo-depletion, fully covered the gene 
bodies (Fig. 2) and, similar to ribo-depleted libraries from intact RNA, 
more reads mapped to intronic areas of the genome (Supplementary 
Fig. 32). Second, the degraded RNA showed minor differences in  
gene detection or DEG accuracy, with high Spearman correlation  
(correlation coefficient > 0.96, Fig. 3c) in expression comparisons 
to intact RNA samples. In addition, a comparison to the orthogonal 
PrimePCR data set showed that the degraded RNA analysis was highly 
correlated (Pearson correlation coefficient > 0.83) to the correspond-
ing intact samples (Supplementary Table 4). However, the degraded 
RNA did have a lower Spearman rank-order correlation with quan-
titative PCR for the expression differences detected between samples 
A and B. The Spearman correlation was highest for heat degradation 

(correlation coefficient  = 0.83, AH), followed by RNase A (correlation 
coefficient = 0.79, AR), and then sonication (correlation coefficient = 
0.74, AS) (Supplementary Fig. 36a–c). Comparison of the results from 
one degraded sample to the results from one intact sample, repeated  
at multiple laboratories (sites L, V and R), also produced an overall 
high average Spearman correlation coefficient (0.80, Supplementary 
Fig. 36d). These data indicate that although appropriate library  
preparation of degraded RNA can produce accurate expression  
measurements (Supplementary Fig. 36), combining intact and 
degraded samples (or samples degraded during different types of  
tissue processing) within an experiment should be avoided.

DISCUSSION
This ABRF-NGS study represents, to our knowledge, the largest reported 
cross-platform, cross-protocol and cross-site examination of RNA-seq 
data performed to date. The results provide a unique opportunity to 
examine various aspects of the transcriptome, including the intra- and 
inter-site coefficients of variance of gene detection, gene expression 
quantification and RNA splicing between sequencing platforms, as well 
as the ability of long read lengths to enable complete isoform characteri-
zation. Comparisons of platform-specific aligners with STAR showed 
that mapping rates, error rates and transcript coverage are all larger con-
cerns than is gene quantification when considering inter-platform data. 
As such, the use of different alignment algorithms will have different 
influences on comparisons between experiments depending on the met-
ric studied, and the importance of ‘bioinformatics noise’ can be placed 
alongside technical and biological noise as key factors in experimental 
design. Finally, the results expanded previous work27 by showing that 
gene detection and quantification with highly fragmented or degraded 
RNA samples (from three types of degradation) is similar to data from 
intact RNA, once ribosomal RNA is removed.

This study found similar RNA-seq results between the various NGS 
platforms and similar ranges in coefficients of variance across labora-
tory sites for each platform. These results indicate that both long- and 
short-read technologies measure gene expression with similar levels 
of statistical variation, although they show a tenfold variation for 
error rates in indels. Using normalized gene expression as a compari-
son measure, we found high intra-platform consistency (correlation 
coefficient > 0.86) and high inter-platform concordance (correlation 
coefficient > 0.83) measured by Spearman rank correlation (Fig. 3b). 
However, the results clearly show that deeper sequencing of the tran-
scriptome is needed to reveal low abundance transcripts and splice 
junctions, indicating that read depth should be a key consideration 
when experimental goals include rarely expressed genes, coverage of 
introns and nonpolyadenylated targets. Very deep sampling is not cur-
rently cost-effective with long-read platforms such as PacBio or 454 
(Table 1), and thus the best discovery platforms for low-abundance 
targets are currently the shorter read platforms, as they can cover a 
wider dynamic range of RNA molecules (i.e., generate more reads 
per sample).

Despite lower read depths and higher costs, the longer read NGS 
technologies have the best ability to efficiently catch the vast major-
ity of known splice junctions (Fig. 3e–g), indicating that they can be 
an effective means to annotate splicing complexity that can reach as  
high as 10108 isoforms44. The ABRF-NGS study’s results include a 
wealth of putative novel splice junctions, with more than one million 
such junctions observed on at least one platform. These putative novel 
splice junctions displayed greater inter-platform disparity than the 
known splice junctions (Fig. 3e). This difference was likely due to 
the challenge of correctly predicting novel isoforms and also to the 
possibly high false-positive rate of such predictions, which is expected 
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given their lower expression levels. However, a substantial number of 
the previously unannotated, predicted junctions are likely genuine, as 
they were observed using multiple platforms. The resulting data sets 
nearly double the catalog of splice junctions for these RNA standard 
samples. The junctions discovered on multiple platforms can be used 
alone or with previous data for future algorithm design and assay 
optimization, and as positive controls, to advance splicing isoform 
characterization by RNA-seq14,45–47.

Perhaps most notably, the data demonstrated that results from 
poly-A–enriched and ribo-depleted RNA libraries, and even librar-
ies made from severely degraded RNAs, are comparable. Given suf-
ficient depth of sequencing, results from ribo-depleted libraries can 
include almost all of the differentially detected genes identified by 
the poly-A preparation method, without loss of sensitivity or spe-
cificity. This was evident not only in the overlap of DEGs, but also in 
comparisons to TaqMan and PrimePCR data. Furthermore, a near-
complete reconstruction of the transcriptome profile was observed 
when using degraded RNA in the ribo-depletion protocol, with some 
variation between degradation treatments, as judged by correlations 
to the expression abundances measured in intact samples A and B 
by quantitative PCR and by the uniform coverage of full transcript 
lengths. Similar degraded RNA results were recently reported27, sug-
gesting that low-quality samples can now be considered for reliable 
RNA-seq expression profiling. This should support studies using old, 
degraded or fragmented RNAs, such as those from formalin-fixed, 
paraffin-embedded (FFPE) tissues in clinical archives. Although the 
degraded RNA samples were run only on the HiSeq platform, the clear 
utility of such an approach should spur the development of similar 
degraded RNA resources for analyses on all sequencing platforms.

However, despite their overall similarities, distinct transcrip-
tomes are represented in libraries prepared by poly-A enrichment, 
ribo-depletion or combined poly-A and 5′G cap enrichment. The 
dual enrichment method for PacBio libraries provided superior 5′ 
to 3′ coverage of the sequenced transcripts, as illustrated by com-
parisons across platforms for genes consistently detected by PacBio 
(Supplementary Fig. 37). The revised version of the Illumina library 

kit (v2 versus v3) includes built-in ribo-depletion and tags cDNA 
strand orientation, and the two protocols produced differences in 
gene-body coverage. A comparison of poly-A and ribo-depleted 
libraries showed different detection of nonpolyadenylated transcripts, 
3′UTRs and introns. The former is an intentional consequence of the 
enrichment protocol, but it is not clear if the 3′UTR coverage bias is 
due to different efficiencies of priming during reverse transcription or 
to skewed sampling caused by a higher concentration of structural and 
noncoding RNAs in ribo-depleted libraries. Owing to the higher rate 
of intron-mapped reads, RNA-seq of total RNA will require greater 
read depths for ribo-depleted libraries (~2.5×) than for poly-A librar-
ies to achieve equal coverage of exons. Transcriptome measurement 
variations demonstrated between the reference data sets are easily 
avoided by consistently using the same protocols, platform and analy-
sis pipeline for all samples in an experiment. Nonetheless, if this is 
not possible, surrogate variable analysis enabled removal of latent 
variables from the data for ribo-depleted and poly-A–enriched librar-
ies, producing nearly indistinguishable lists of DEGs and illustrating 
the utility of surrogate variable analysis as a powerful and strongly 
recommended method for ameliorating the effects of inter-batch and 
cross-protocol noise.

The results presented here also highlight additional variables that 
should be considered when aligning library protocols and platforms 
with research goals. The reported QV values of all platforms are all 
higher than empirically derived error rates, indicating that a splicing-
aware, base quality score recalibration may be needed for RNA-seq, 
as is already done for DNA-seq with GATK. Long-read sequencing 
effectively cataloged splicing isoforms, but had less dynamic range 
for transcript quantification and discovery due to lower read depths. 
The use of the ERCCs is generally recommended as a good quality 
control metric, but these standards performed better in ribo-depleted 
libraries than in poly-A libraries, and this should also be considered 
during experimental design. In summary, the priorities for biologi-
cal interpretation are essential when considering the protocols and 
methods that will be used in an RNA-seq experiment. Some of these 
priorities are summarized in Table 1, which provides a cross platform 

Table 1 Summary of sequencing platforms as deployed in the ABRF-NGS study of RNA-seq

Vendor Instrument Version

Run  
Time 

(hours)

Read 
length 
(mean)

Reads  
per run  

(millions)
Yield  
per run

Cost  
per run 
 ($)a

Cost  
per Mb  

($) Paired-end Application Strengths

Illumina HiSeq 2000 High Output 132 50 6,000 300 Gbb 18,725.00 0.06 Yes Gene expression;  
splice junction  
detection; variant  
calling; fusions

Deep read counts  
for transcript  
quantification

Illumina HiSeq 2500 High Output 132 50 6,000 300 Gbb 18,725.00 0.06 Yes As above As above
Illumina MiSeq v2 kit 39 250 30 7.5 Gb 982.75 0.13 Yes Splice junction  

detection;  
variant calling

Rapid transcript  
quantification and 
variant detection

Life Technologies PGM 318 chip 7.3 176 6 1.056 Gb 749.00 0.71 No Splice junction  
detection;  
variant calling

Rapid transcript  
quantification and 
variant detection

Life Technologies Proton Proton I chip 2–4 81 70 5.67 Gb 834.00 0.15 No Gene expression;  
variant calling

Good read depth 
and length for 
transcript  
quantification

Pacific  
Biosciences

RS RS 0.5–2 1,289 0.03 38.67 Mb 136.38 3.53 No Splice junction  
detection; 
full-length gene 
coverage

Extended read  
lengths

Roche 454 GS FLX+ 20 686 1 686 Mb 5,985.00 8.72 No Splice junction  
detection

Read length

aSequencing reaction reagents, at academic list price; does not include library preparation reagents, labor, data storage or analysis, equipment or maintenance. bOne sequencing run using two 
flowcells. Pacific Biosciences is calculated based on CCS (circular consensus sequencing) reads; Gb, billion bases, Mb, million bases.
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Table 2 Sequencing platforms, chemistries and library preparations
Illumina Hiseq2000/2500 and MiSeq

Labs Samples Libraries per sample Preparation Read length Number of reads per library Output (Mb)

1(L) MAQC Aa 3 Ribo-depleted 100 bp (2 × 50) 386,726,967 38,673
MAQC Ba 3 Ribo-depleted 100 bp (2 × 50) 251,724,566 25,172

2(R) MAQC Aa 3 Ribo-depleted 100 bp (2 × 50) 229,131,233 22,913
MAQC Ba 3 Ribo-depleted 100 bp (2 × 50) 229,591,730 22,959
MAQC Ba 1 Ribo-depleted 500 bp (2 × 250) 7,848,217 3,924

3(V) MAQC Aa 3 Ribo-depleted 100 bp (2 × 50) 207,603,620 20,760
MAQC Ba 3 Ribo-depleted 100 bp (2 × 50) 239,930,780 23,993

4(N) MAQC Aa,c 2 Ribo-depleted 100 bp (2 × 50) 215,903,801 21,590
MAQC Ba,c 3 Ribo-depleted 100 bp (2 × 50) 219,257,190 21,926
MAQC Aa,d 1 Ribo-depleted 100 bp (2 × 50) 183,811,383 18,381

5(M) MAQC Aa,d 3 Ribo-depleted 100 bp (2 × 50) 386,726,967 38,673
MAQC Aa,e 3 Ribo-depleted 100 bp (2 × 50) 181,740,643 18,174

6(W) MAQC Ab 4 Ribo-depleted 100 bp (2 × 50) 128,133,887 12,813
MAQC Bb 4 Ribo-depleted 100 bp (2 × 50) 137,096,343 13,710
MAQC Cb 4 Ribo-depleted 100 bp (2 × 50) 142,135,538 14,214
MAQC Db 4 Ribo-depleted 100 bp (2 × 50) 128,040,437 12,804
MAQC Ab 4 Poly-A–enriched 100 bp (2 × 50) 106,762,840 10,676
MAQC Bb 4 Poly-A–enriched 100 bp (2 × 50) 111,430,017 11,143
MAQC Cb 4 Poly-A–enriched 100 bp (2 × 50) 108,582,900 10,858
MAQC Db 4 Poly-A–enriched 100 bp (2 × 50) 105,978,082 10,598

aIllumina RNA TruSeq v2 library kit. bIllumina RNA TruSeq v3 library kit. cRNaseA degraded. dHeat degraded. eSonicated.

Life Technologies Ion Torrent PGM and Proton

Labs Samplesf Libraries per sample Preparationg Median read length Mean number of reads Output (Mb)

1(P) Ion PGM MAQC A 2 Poly-A–enriched 161 5,323,672 857
MAQC B 2 Poly-A–enriched 184 5,802,563 107
ERCC 1 1 Poly-A–enriched 189 4,188,385 792
ERCC 2 1 Poly-A–enriched 158 3,231,475 511
ERCC 1 1 Poly-A–enriched 180 4,442,093 800
ERCC 2 1 Poly-A–enriched 189 4,310,663 815

2(H) Ion PGM MAQC A 3 Poly-A–enriched 128 3,374,068 445
MAQC B 3 Poly-A–enriched 129 3,409,662 436
ERCC 1 2 Poly-A–enriched 152 2,538,594 810
ERCC 2 2 Poly-A–enriched 112 2,119,884 514
VL A 1 Poly-A–enriched 187 3,965,022 770
VL B 1 Poly-A–enriched 162 4,138,326 687

3(S) Ion PGM MAQC A 3 Poly-A–enriched 198 5,049,998 1,000
MAQC B 3 Poly-A–enriched 199 5,743,028 1,140
ERCC 1 1 Poly-A–enriched 206 6,835,287 1,410
ERCC 2 2 Poly-A–enriched 207 7,119,023 1,480
ERCC 1 1 Poly-A–enriched 182 6,525,478 1,190
ERCC 2 1 Poly-A–enriched 191 5,490,495 1,050

4(S) Proton MAQC A 3 Poly-A–enriched 78 50,063,784 3,900
MAQC B 3 Poly-A–enriched 85 53,203,028 4,497

5(B) Proton MAQC A 1 Poly-A–enriched 95 57,701,947 4,864
MAQC B 1 Poly-A–enriched 75 39,099,605 2,946
MAQC C 1 Poly-A–enriched 64 41,308,206 2,641
MAQC D 1 Poly-A–enriched 53 46,665,851 3,160

6(L) Proton MAQC A 1 Poly-A–enriched 99 60,106,614 5,978
MAQC B 1 Poly-A–enriched 100 60,769,231 6,085
MAQC C 1 Poly-A–enriched 107 60,353,696 6,454
MAQC D 1 Poly-A–enriched 106 69,977,984 7,413

fERCC: synthetic standards only (External RNA Control Consortium); VL: pilot data for sample A or B. gIon Total RNA-Seq v2 library kit.

Pacific Biosciences RS

Labs Samples
Libraries per sample: 

size fractionation Preparationh Avg. read length Reads/Mb Output (Mb)

1(A) MAQC A 1: >3 kb Poly-A + 5′G cap 3,983 251 663
MAQC A 1: 2–3 kb Poly-A + 5′G cap 3,513 284 520
MAQC A 1: 1–2 kb Poly-A + 5′G cap 2,811 356 780
MAQC B 1: >3 kb Poly-A + 5′G cap 3,467 288 536
MAQC B 1: 2–3 kb Poly-A + 5′G cap 3,223 310 459
MAQC B 1: 1–2 kb Poly-A + 5′G cap 3,112 321 638

(continued)
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summary of the strengths and relative costs of the sequencing tech-
nologies included in this study.

The ABRF-NGS study is not intended to be a ‘bake-off ’ between 
NGS platforms, but rather is an effort to establish a useful reference data 
set for each platform, which will assist laboratories in improving their 
methods and in evaluating new chemistries, protocols and instruments. 
It is encouraging that comparison of gene expression quantification, 
including results from intra-platform, inter-platform, inter-protocol 
and even inter-aligner comparisons, demonstrated high correlations 
overall. This result suggests broader inter-study analyses and data min-
ing can be successfully carried out across multiple platforms despite 
intrinsic differences between technologies, methods and aligners.

Reference data resources, such as the results from this ABRF-NGS 
study, are key to understanding the effects of variable sample quality, 
changes to platform protocols and the adoption of new technologies. 
Given the rapid pace of advancement in sequencing technologies, 
techniques and bioinformatics tools, the methods and data described 
here can facilitate the development of best practices for gene quan-
tification, isoform characterization, dynamic range comparisons, 
managing inter-site and intra-site variation, analysis pipeline refine-
ment and cross-platform testing of transcriptome hypotheses. These 
data can also be used to address other aspects of RNA-seq, including 
polymorphism detection, allele-specific expression, intron retention, 
RNA editing and gene fusions, and provide an immediately useful 
resource that can complement current databases, such as the RNA-Seq 
Atlas48. These and other applications, especially clinical molecular 
diagnostics that rely on nucleic acid biomarkers, will require a level 
of technical stability across time and both within and between studies, 
which this study helps to establish. Reference data resources are key to 

monitoring platform stability, and widespread adoption of standard 
samples and routine reference benchmarking are challenges that must 
be addressed to further advance genomics technologies.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. GEO: GSE46876.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Table 2 (continued)
Pacific Biosciences RS

Labs Samples
Libraries per sample: 

size fractionation Preparationh Avg. read length Reads/Mb Output (Mb)

2(F) MAQC A 1: >3 kb Poly-A + 5′G cap 3,472 288 634
MAQC A 1: 2–3 kb Poly-A + 5′G cap 3,644 274 555
MAQC A 1: 1–2 kb Poly-A + 5′G cap 2,792 358 927
MAQC A 1: unfractionated Poly-A + 5′G cap 2,832 353 260
MAQC B 1: >3 kb Poly-A + 5′G cap 3,578 280 667
MAQC B 1: 2–3 kb Poly-A + 5′G cap 3,523 284 594
MAQC B 1: 1–2 kb Poly-A + 5′G cap 2,844 351 991
MAQC B 1: unfractionated Poly-A + 5′G cap 2,814 355 251

3(H) MAQC A 1: >3 kb Poly-A + 5′G cap 3,201 312 528
MAQC A 1: 2–3 kb Poly-A + 5′G cap 3,135 319 344
MAQC A 1: 1–2 kb Poly-A + 5′G cap 2,761 362 767
MAQC A 1: unfractionated Poly-A + 5′G cap 2,998 334 477
MAQC B 1: >3 kb Poly-A + 5′G cap 3,189 314 572
MAQC B 1: 2–3 kb Poly-A + 5′G cap 2,952 339 383
MAQC B 1: 1–2 kb Poly-A + 5′G cap 2,779 360 660
MAQC B 1: unfractionated Poly-A + 5′G cap 3,069 326 395

hPacBio Large Insert Template Prep Kit.

Roche 454 FLX

Labs Samples Libraries per sample Preparationi Median read length Total reads per picotiter plate Output (Mb)

1(I) MAQC A 1 Poly-A–enriched 520 1,061,320 552
MAQC B 1 Poly-A–enriched 494 1,001,678 495
MAQC A 1 Poly-A–enriched 497 805,399 400
MAQC B 1 Poly-A–enriched 496 1,076,634 534

2(P) MAQC A 1 Poly-A–enriched 455 832,580 379
MAQC B 1 Poly-A–enriched 470 1,181,610 555

3(C) MAQC A 2 Poly-A–enriched 505 1,294,497 654
MAQC B 2 Poly-A–enriched 358 293,471 105

iRoche cDNA Rapid Library kit.
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ONLINE METHODS
RNA used in the ABRF-NGS study. Standardized, commercial RNAs were 
sent to multiple sites for RNA-seq library preparation using different methods. 
Data were generated on five NGS platforms: Illumina HiSeq 2000/2500, Roche 
454 GS FLX+, Life Technologies Ion Personal Genome Machine (PGM) and 
Proton, and the Pacific Biosciences (PacBio) RS. The HiSeq 2500 was used 
for the libraries from site W; all other Illumina libraries were sequenced on 
a HiSeq 2000.

Universal Human Reference RNA (740000, Agilent Technologies) 
and Ambion FirstChoice Human Brain Reference RNA (AM6000, Life 
Technologies) were used as the primary input RNAs for this study. These sam-
ples were labeled as MAQC samples A and B, respectively, in the MicroArray 
Quality Control (MAQC) experiments initiated in 2005 (ref. 9). The A and 
B naming convention is maintained here. These RNA samples were selected 
because they are well-characterized and have been used for many benchmark-
ing studies, including a concurrent complementary RNA-seq study led by the 
US Food and Drug Administration11.

ERCC spike-in synthetic transcripts were added at manufacturer recom-
mended amounts (4456739, Life Technologies) to A and B standards. These 
RNAs, also developed for the 2006 MAQC study, consist of different ratios 
of artificially generated, poly-adenylated RNA transcripts of various lengths 
and combined in differing known concentrations30. Analyzing the ratios of 
these synthetic transcripts following library construction enables detection of 
sample preparation and platform-based biases.

The quality of the RNA samples was assessed before distribution to the 
participating laboratories, using the Agilent Bioanalyzer 2100, Nanodrop  
ND-1000 Spectrophotometer (Thermo Scientific) and fluorometry. All  
shipments were on dry ice. The samples distributed to the participating  
core laboratories and the libraries produced from these samples are sum-
marized in Table 2.

PrimePCR RT-qPCR. PrimePCR RT-qPCR reactions were run in 384-well 
plates according to the manufacturer’s instructions (Bio-Rad). In short, 5 µl 
reactions contained 1× final SsoAdvanced SYBR Green Supermix (Bio-Rad), 
1× final PrimePCR assay components and 25 ng of cDNA, and were run in 
a CFX384 Touch real-time PCR detection system (Bio-Rad) using standard 
cycling parameters. Quantification cycle (Cq) value determination was done 
using CFX Manager software (Bio-Rad) with autocalculated baseline and 
fixed threshold settings (300 relative fluorescence units). A Cq value of 35 
 corresponds to a single molecule of cDNA input (see below).

2 µg of each MAQC RNA sample (MAQC A and B, and 1:3 mixture samples 
MAQC C and D) was reverse transcribed using the iScript advanced cDNA syn-
thesis kit for RT-qPCR (Bio-Rad) in a 20 µl reaction. Prior to reverse transcrip-
tion, MAQC B RNA was DNase treated using the Heat&Run gDNA removal 
kit according to the manufacturer’s instructions (ArcticZymes). Absence of 
gDNA contamination in both MAQC A and DNase treated MAQC B was veri-
fied by qPCR using 25 ng of RNA as input and DNA-specific assays49. MAQC 
samples A, B, C and D were measured in parallel in the same 384-well plate, 
each time for 96 different assays (n = 1) (according to the sample maximization 
run layout strategy as described50).

All PrimePCR assays have been extensively wet-lab validated (see Bio-Rad 
tech note 6262 for more details on PrimePCR assay validation and perform-
ance characteristics). In accordance with the MIQE guidelines51, assays were 
evaluated for specificity, efficiency, linear dynamic range and background 
signal in negative controls. At least ten qPCR reactions were done for each 
assay: cDNA from reference RNA, no-template control, gDNA and seven 
points from a tenfold dilution series of synthetic templates (from 20 million 
to 20 copies). Amplification efficiencies were calculated from the results of 
the dilution series. Only assays that displayed good linear performance in the 
20 to 20 million copy number range (R2 > 0.99) with efficiencies of 90–110% 
were considered to be of sufficient quality. The average y-intercept of the 
standard curves was 35, indicating that a single template molecule results in 
a Cq value of 35 when amplified with SsoAdvanced SYBR Green Supermix 
in a qPCR reaction.

Data analysis and bioinformatics protocols. All data, with analysis methods,  
are freely available at the GEO, GSE46876. Additional study materials,  

code, scripts and methods are available at: http://physiology.med.cornell.edu/
faculty/mason/lab/data3/sac2026/ABRF/index.html. Code and scripts are also 
in Supplementary Software.

Sequence data preprocessing. Sequences were aligned to the hg19 genome 
assembly (GRCh37). Read counts were calculated using the Rmake pipe-
line (http://physiology.med.cornell.edu/faculty/mason/lab/r-make/) with 
GENCODE v12 annotation. Read-level quantification for genes is achieved 
using Boost Interval Container Library split_interval_map and a reference  
transcriptome in BED format following the union mode (illustrated in  
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html). For gene  
expression analysis, sequences from HiSeq reads were aligned with  
STAR (https://code.google.com/p/rna-star/; parameters see Supplementary 
Table 5; v2.2.1d) and with ELAND (http://www.illumina.com/software/
genome_analyzer_software.ilmn; ELAND_standalone.pl -if $input.R1.fastq.
gz -if input.R2.fastq.gz -ref hg19/–bam -it FASTQ -od . -op output -rt -l 
output.log; casava 1.8.2), PGM and Proton reads were aligned with TMAP 
(https://github.com/iontorrent/TMAP; command line: tmap map all -f hg19.
fa -r <(zcat input.fastq.gz) -i fastq -Y -a 0 -o 1 -g 0 -n 5 -s output.bam stage1 
map1 map2 map3; tmap.3.0.1), PacBio reads with GMAP (http://research-pub.
gene.com/gmap/; gmap -D gmap_db/ -d hg19 -t 24 -f samse -n 0 input.fastq.
gz; version 2013-10-04), ILMN reads with ELAND (http://www.illumina.com/
software/genome_analyzer_software.ilmn; ELAND_standalone.pl -if $input.
R1.fastq.gz -if input.R2.fastq.gz -ref hg19/–bam -it FASTQ -od . -op output -rt 
-l output.log; casava 1.8.2), and 454 reads with GS Reference Mapper (http://
www.454.com/products/analysis-software/; GUI with “cDNA” settings). Only 
uniquely mapped reads were used for gene expression quantification. RNA 
expression levels were calculated as reads per kilobase of transcript per million 
mapped reads (RPKM) or, for paired-end sequencing, fragments per kilobase 
of transcript per million mapped reads (FPKM). Splice junction detections 
were generated by STAR RNA-seq aligner (parameters see Supplementary 
Table 5; v2.3.0e for 454, PGM, Proton, PacBio). Total junctions from 454, 
PGM, Proton, PacBio and HiSeq (ribo-depleted RNA and Illumina v2 kits 
from sites L, R, V) were used for comparison. Junction detection efficiency 
comparisons were normalized for read depth by using all PacBio data and 
subsets of data from other platforms (454: site I, HiSeq: site L-replicate1-Lane 
5, PGM: site S-replicates 1-3, Proton: site S-replicate1). The resulting number 
of bases per platform used for this calculation ranged from 630 million to 
5.451 billion bases.

RNA-seq differential gene expression analysis. The raw read counts were nor-
malized by the trimmed mean of the M-values normalization method, which 
uses a weighted trimmed mean of the log expression ratios52–54. The mean-
variance relationship of the counts was estimated, and the appropriate weights 
for each observation were computed based on their predicted variance, using 
voom from the limma package39. By applying the lmFit(), contrasts.fit() and 
eBayes() functions, also from the limma package, the log2 fold differences  
and standard errors were estimated by fitting a linear model for each gene,  
and empirical Bayes smoothing was applied for the standard errors. 
Benjamini-Hochberg adjustment for multiple hypothesis testing was applied 
at a variety of false discovery rates (FDR = 0.05 or 0.01 or 0.001). Differentially 
expressed genes were evaluated at log2 fold change (FC) cutoffs (FC = 1.5 
or 2). Data from HiSeq site W, which used both ribo-depletion and poly-A  
library methods, were used for the comparison of different protocols  
from Illumina. Other platforms’ data from 454 (sites C, P, I), PGM (sites H,  
S, P) and Proton (sites B, S) were used in the same fashion for cross- 
platform comparisons.

Expression level CV calculations. The inter-site coefficients of variation for 
normalized gene expression levels were calculated on the matrix of the same 
sample with the same platforms from all test sites for each gene. Only genes 
detected by all replicates for each platform were used for CV calculations.

Surrogate variable analysis. Normalized gene expression values in log2 
scale were used to detect latent variables using the sva package41. Using 
the twostepsva.build() function based on the two-step algorithm of Leek 
and Storey55, three latent variables were constructed. Latent variables were 
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removed in the DEG analysis by adding each latent variable to the design 
matrix for limma pipeline39.

RNA-seq quality metrics definitions. (i) Sequencing depth: total number 
of reads sequenced. (ii) Mapping rate: percentage of reads which mapped 
uniquely to the reference genome. (iii) Sequence directionality: the number 
of reads which mapped to the forward and reverse strands compared to 
those of the AceView gene model. (iv) Nucleotide composition: the total 
number of A/G/C/T sequenced at each position across the length of the read.  
(v) Guanine-cytosine (GC) distribution: the number of reads with a par-
ticular %GC content. (vi) Read distribution: the fraction of the reads which 
mapped to either exons, 3′UTRs, 5′UTRs, introns or intergenic regions (or the 
intersection of any of the categories) as defined by the AceView gene models.  
(vii) Coverage uniformity: the number of reads covering each nucleotide 
position of all genes scaled to 100 nt. (viii) Base quality scores (QV): Phred-
quality scores as calculated by Illumina’s HiSeq Control Software for each 
nucleotide position across all reads. (ix) Duplication rate: the number of reads 
with exactly the same sequence content. See Wang et al.56 for a more thor-
ough description of metrics. (x) Mismatch rate calculation: total number of 
mismatches was calculated by parsing and summing up the number in NM 
tag in bam files; total bases of indel mismatches comes from cigar field by 
parsing and summing up the number in front of “I” or “D.” The total number 
of single-base mismatches was the total number of mismatches subtracted by 
total number of bases of indel mismatches. The mismatch rates were calculated 
using the number of mismatches divided by the number of mapped bases 
from cigar field by SAMtools bam check. 454 GSRM alignment’s cigar field 
and PAC GMAP alignment used SAMtools calmd to calculate the MD tag 
before mismatch rates calculation. PGM and PRO calculations used TMAP 
alignment without softclipping.

TaqMan gene expression analysis. TaqMan data for samples A, B, C and D 
were obtained through the Gene Expression Omnibus database (accession 
number GSE5350)57. Data for four replicates of each sample were analyzed. 
Undetectable CT values (CT > 35 or CT = 0) were removed before normaliza-
tion. The data were normalized using the HTqPCR package58 to the average CT 
of POLR2A (lowest s.d. of CT value) by subtracting the average CT of POLR2A 
from each TaqMan target to give the log2 difference between endogenous con-
trol and target genes. TaqMan differential gene analysis was performed as for 
RNA-seq data, without the trimmed mean and voom transformations.

PrimePCR RT-qPCR gene expression analysis. Undetectable Cq values (Cq 
> 35 or Cq = 0) were removed from data for samples A, B, C and D. The s.d. of 
the Cq values for each gene were calculated, and the gene MYSM1 exhibited 
the lowest s.d. The data were normalized by subtracting the average Cq of 
MYSM1 from each PrimePCR target to give the log2 difference between the 
endogenous control and the target genes. The normalized Cq values were then 
used to calculate the R2 correlation to the RNA-seq data using lm() from the R 
stats package and summary function from the R base package.

Comparison between RNA-seq and TaqMan data. DEGs were validated from 
the Illumina RNA-seq data from each site, for six comparisons (A-B, A-C, 
A-D, B-C, B-D, C-D), using the DEGs from the TaqMan data. MCC42,43 was 
used to compare performance metrics for external validations. Each DEG 
from the RNA-seq data was predicted based on its adjusted P value and its 
fold difference. The determination of truth in the performances metric analy-
sis was the detection of DEGs by the TaqMan data. Here, the true-positive 
rate was the probability of a positive DEG result from RNA-seq given that 
TaqMan called the same gene differentially expressed, and the false-posi-
tive rate is the probability of a positive DEG result from RNA-seq given that 
TaqMan did not call the gene as differentially expressed. MCC was calcu-
lated to measure how accurately RNA-seq can distinguish between DEGs and  
non-DEGs.

Platform-specific protocols. RNA samples were evaluated for quality before 
distribution to the participating laboratories using the Agilent Bioanalyzer 2100 
(Agilent) (Supplementary Fig. 38), Nanodrop ND-1000 Spectrophotometer 
(Thermo Scientific), and fluorometry. All shipments were on dry ice.  

The study coordinated shipments of library preparation and sequencing rea-
gents so that all laboratory sites received reagents from similar manufacturing 
lots as determined by the vendor.

Illumina HiSeq 2000/2500 and MiSeq. Starting material and enrichment. 
TruSeq libraries were synthesized from 2 µg of intact (RIN > 7) and degraded 
(RIN < 3) MAQC A and MAQC B RNA. Three replicate libraries of intact A 
and B were prepared at each of three core laboratory sites. Degraded RNA 
libraries were prepared at two additional core laboratory sites as listed in 
Table 2. Ribosomal RNA-depletion material was generated using the Ribo-
Zero Gold system (Epicentre Biotechnologies) according to the manufacturer’s 
instructions. The preparation of three types of artificially degraded MAQC  
A and B RNA was performed at a single core laboratory site, using 75 µg of 
each RNA at a concentration of 1 µg/µl. Three techniques were used: (i) heat 
treatment in deionized water at 99 °C for 10 min; (ii) exposure to 1 ng/µl  
RNase A for a sufficient time period to result in a RIN of 3, with the RNase 
then neutralized with 10 µl RNase Inhibitor (RiboLock EO0381, Thermo 
Scientific); and (iii) sonication within a Covaris S2 MicroVial for 6 × 55 s  
at 5% DC, intensity 3 and 100 c/b. All resulting RNA sample degradations  
(i.e., RIN values) were analyzed using the Agilent 2100 Bioanalyzer 
(Supplementary Fig. 39).

Library construction and sequencing. Following ribo-depletion, all recovered 
RNA was processed using the Illumina TruSeq RNA Sample Preparation 
Kit v2 protocol at the “elute-fragment-prime” step, followed by the standard 
TruSeq protocol. Completed libraries were evaluated by DNA quantification 
and Bioanalyzer analysis, and then submitted to a single core laboratory site 
for sequencing. Sequencing libraries were constructed with barcodes to allow 
multiplexing of 12 samples per lane, pooled to target 200 million clusters per 
channel and 100 million reads per library, and distributed over multiple chan-
nels of three flow cells to normalize for lane and run variability. Sequencing 
was carried out on Illumina HiSeq 2000 and 2500 instruments using protocols 
HCS 1.5.15.1 and RTA 1.13.48 and paired-end 50-bp reads. One of the replicate 
libraries for intact MAQC B was also sequenced on a MiSeq instrument using 
the 4 nM protocol (v2.2.0.2) targeting 15 million clusters with paired-end 
250-bp reads. The recently released TruSeq RNA Sample Preparation Kit v3 
differs from v2 by including ribosomal RNA depletion and preserves cDNA 
strand orientation. Lab site W compared poly-A enriched and ribo-depleted 
libraries constructed using the v3 kit.

Life Technologies Ion Torrent PGM. Starting material and enrichment. Four 
different Ion Torrent PGM libraries were constructed at three core labora-
tory sites using the MAQC A, MAQC B, ERCC 1 and ERCC 2 RNAs. Five 
micrograms of each MAQC RNA was enriched for poly-A RNA (MRRK1010, 
MPG Kit, PureBiotech) using the recommended Life Technologies Ion pro-
tocol for Transcriptome Profiling of Low-Input RNA Samples (April 2011). 
The MPG-Streptavidin was prepared from 100 µg (10 µl) of the complex 
and resuspended in 5 µl of Release Solution instead of 20 µl. This process 
was repeated as a second round of enrichment to further deplete rRNA from 
the samples. The resulting RNA was assessed for yield and purity using an 
Agilent 2100 Bioanalyzer PicoChip. No enrichments were performed for the  
ERCC samples.

Library construction. Whole transcriptome library preparation was per-
formed using 5–10 ng of fragmented enriched poly-A RNA according to 
the manufacturer’s protocol (Ion Total RNA-Seq Kit V2 protocol #4476286B 
Life Technologies). Size selection of a 315-bp product was performed using 
a standard Pippin prep protocol (Sage Science) followed by purification with 
AMPure beads (Beckman-Coulter Genomics). The synthetic ERCC 1 and 
ERCC 2 control RNA library construction was performed directly from  
30 ng of the non-poly-A–enriched sample.

Template preparation and sequencing. Emulsion PCR was performed using 
the One Touch system (Life Technologies). Beads were prepared from 70–100 
million copies using the One Touch 200 Template Kit v2 #4471263. Some 
libraries were prepared for 70–100 million copies and others using the standard 
210 million copies as stated in the RNA-seq protocol #4476286B. Sequencing 
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access protocol provided to the ABRF-NGS Consortium; refinements to the 
protocol are under development by the vendor.

Starting material. MAQC A and MAQC B RNA samples were used to  
generate PacBio libraries. The poly-A+ fraction was purified from total RNA 
using Invitrogen Dynabeads Oligo(dT)25, according to the manufacturer’s 
protocol (61002, Life Technologies). MAQC A RNA (100 µg) was mixed with 
1.33 mg of washed Dynabeads, and 200 µg MAQC B RNA was mixed with 
2.66 mg of washed Dynabeads, collected by magnetic precipitation, washed 
as directed, and eluted into 27 µl of 10 mM Tris-HCl. The amount and 
purity of the poly-A+ RNA was assessed using an Agilent 2100 Bioanalyzer  
RNA NanoChip.

cDNA synthesis. Full-length, double-stranded cDNA was synthesized from 
the poly-A+ mRNA using the first five steps of the Invitrogen SuperScript 
Full Length cDNA Library Construction Kit II (A13268, Life Technologies); 
which included: (i) first strand cDNA synthesis; (ii) RNase I treatment;  
(iii) 5′G Cap-Antibody selection; (iv) second strand cDNA synthesis; and  
(v) cDNA size fractionation by Sephacryl column chromatography and pre-
cipitation. The cDNA was amplified with limited PCR using Phusion Hot Start 
Flex DNA Polymerase (M0535L, New England BioLabs), including PCR prim-
ers adapted from the 3′ oligo-dT primer used for first-strand cDNA synthesis 
and the 5′ adaptor used for second-strand cDNA synthesis, as described in 
the Invitrogen Superscript manual (primer sequences: pGGG ACA ACT TTG 
TCA AAG AAA and pTCG TCG GGG ACA ACT TTG TAC, respectively). 
The PCR amplification profile was 98 °C for 2 min, 14 cycles × (98 °C for  
0.5 min, 64 °C for 0.5 min, and 72 °C for 4 min) and a final extension at 72 °C 
for 4 min. PCR-amplified cDNA was purified using 0.6× volume of Agencourt 
AMPure PB Beads (Beckman Coulter, Life Sciences Division), as specified 
by the supplier (Pacific Biosciences). The purified cDNA was recovered in 
50 µl of TE buffer.

Total cDNA was divided into three MW size classes of 1–2 kb, 2–3 kb, 
and 3–8 kb using SYBR green and 0.8% agarose gel size fractionation, and 
recovered using Qiagen QIAquick Gel Extraction (Qiagen). Each cDNA size 
class was re-amplified using PCR conditions identical to those listed above.  
In order to prepare enough cDNA for multiple sequencing library construc-
tions, a total of eight 100 µl PCR reactions were performed in parallel for each 
of the three cDNA size classes. The resulting PCR product was purified using 
0.6× volume of AMPure PB beads as described above. Purified cDNA was 
quantified by a fluorometric Qubit assay and evaluated using an Agilent 2100 
Bioanalyzer DNA 12000 chip.

Library construction and sequencing. Each of the three size-fractionated cDNA 
pools from the MAQC A and MAQC B samples were distributed to three 
core laboratory sites for library preparation and data generation, resulting 
in a total of 18 libraries. SMRTbell libraries were prepared from 0.5 and  
1.0 µg of each cDNA size class according to the PacBio Large Insert Template 
Library Prep Kit. Double-stranded cDNA was subjected to DNA damage 
repair, end repair and blunt-end ligation to hairpin adaptors. Incomplete 
SMRTbell templates were degraded with a combination of Exonuclease III and 
Exonuclease VII. Intact cDNA SMRTbells were purified by three sequential 
AMPure PB purifications. Sequencing primers were annealed to the SMRTbell 
templates and subsequently bound to the sequencing polymerase using the 
Pacific Biosciences DNA/Polymerase v 2.0 binding kit, following manufac-
turer’s instructions. The samples were sequenced on the PacBio RS using “C2” 
chemistry with SMRTcell loading via diffusion. The data collection times 
were adjusted per cDNA size bin. For size bins less than 2 kb, the 2 × 45 min 
movie protocol was used, whereas bins at or above 2 kb used a 1 × 90 min 
movie protocol.

Platform-specific library preparation parameters for all the participating 
sites are summarized in Table 1.

Data used in each section. Figure 2. Samples A–D, intact and degraded, 
sequenced at all sites.

Figure 3. 3a–e,g. Samples A–B for all sites, except for ILMN, sites L,R,V 
were used here.

was conducted using an Ion PGM 200 sequencing kit (#4474004) on the 318 
Ion chip. Data were collected using the Torrent Suite v3.0 software.

Life Technologies Proton. Starting material, enrichment and library con-
struction. Libraries were prepared from 1 µg of MAQC A, B, C and D RNA 
containing ERCC controls using either poly-A enrichment (as described for 
PGM). After enrichment, 8–9 ng of poly-A mRNA was used for ligation reac-
tions. The size selection step was adjusted to 220 bp using a standard Pippin 
Prep protocol, generating library competent molecules with a template insert 
size of approximately 150 bp. The Ion Total RNA-seq Kit v2 (4476286 Rev 
D, Life Technologies) was used to prepare the MAQC libraries for sequenc-
ing. The resulting material was quantified using the Agilent Bioanalyzer High 
Sensitivity Chip.

Ion template preparation and sequencing. Emulsion PCR was performed using 
the One Touch 2 (OT2) system following the Ion P1 Template OT2 200 pro-
tocol (Life Tech 0007488 Rev2.0) by using 315–615 million DNA molecules 
post-library preparation. Enriched spheres were quantified and ~400–800 mil-
lion spheres were recovered. P1 Chips were loaded according to the spinning 
protocol and sequencing was performed using the Proton 200 sequencing kit 
(MAN0007491 Rev 3.0). Base calls were collected with Torrent Suite using 
v3.4.1 software.

Roche 454 GS FLX+. Starting material and enrichment. The MAQC A and 
MAQC B RNAs were subjected to two rounds of poly-A enrichment at a sin-
gle laboratory site before distribution to the other 454 data generation core 
laboratories. Each RNA sample was enriched using the Oligotex mRNA Mini 
Kit (Qiagen), starting from 60 µg of RNA, according to manufacturer’s instruc-
tions, using the spin column <0.25 mg method. A second enrichment step 
was performed following step 5 of the protocol, according to the manufac-
turer’s instructions. Final elution was performed twice using 50 µl of 700C 
OEB elution buffer. The resulting enriched RNA was quantified by Nanodrop 
spectrophotometry and evaluated on the Agilent Bioanalyzer 2100 using an 
RNA PicoChip.

Library construction. Library synthesis and sequencing was performed with 
MAQC A and MAQC B samples at three core laboratory sites. Each site con-
structed one cDNA library from each of the poly-A–enriched RNA samples.  
Enriched RNA (200 ng) was reduced to 19 µl in a vacuum centrifuge at  
60 °C, followed by library construction using the Roche cDNA Rapid  
Library Preparation Method Manual XL+ (May 2011) with the following  
modifications: (i) RNA Fragmentation Reagent kit (AM#8740, Life 
Technologies) was used in place of the RNA Fragmentation Solution; (ii) all 
magnetic particle concentrator (MPC) pelleting steps were held for 2 min; 
(iii) Roche rapid library multiplex identifier (RL-MIDs) adaptors were used 
for the adaptor ligation step; (iv) the final libraries were quantified using 
a Qubit fluorometer (Life Technologies) and average fragment sizes were 
determined by analyzing 1 µl of the libraries on the Agilent Bioanalyzer 
2100 using a High-Sensitivity DNA LabChip; and (v) the library concentra-
tions were determined using the average fragment size from the Bioanalyzer 
analysis. Final samples were diluted to 1 × 108 molecules/µl in Tris-HCl pH 
8 buffer with 0.001% Tween-20.

Template enrichment and sequencing. Libraries were diluted to 1 × 106 
molecules/µl for sequencing. Emulsion-based clonal amplification and 
sequencing on the Roche 454 Genome Sequencer FLX+ was performed accord-
ing to the manufacturer’s instructions (454 Life Sciences). Each library was 
sequenced on one full PicoTiterPlate (PTP) per laboratory site. An additional 
PTP per library was sequenced at one of the laboratories for a total of four PTPs 
per MAQC sample. Sequencing was done using the Roche XL+ sequencing kit 
with software version 2.6 or 2.8 with Flow Pattern A. Signal processing and 
base calling were performed using the bundled 454 Data Analysis Software 
(v.2.6 and 2.8).

Pacific Biosciences (PacBio) RS. The RNA-seq methods used in this study 
for full-length cDNA sequencing on the Pacific Biosciences RS are an early 
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3f. 454: site I all replicates; ILMN: site L, sample A-1_D1DJ4ACXX_
CGATGT_L005_R1_001 and sample B-1_D1DJ4ACXX_GCCAAT_L005_
R1_001; PAC: all data; PGM: site S, replicates 1-3; PRO: site S, replicate 1.

Figure 4. 4a. Sample B was used. POLYA: site W replicate 1; RIBO: site W 
replicate 1; PAC: site H replicate 2; 454: site I replicate 1; PGM: site S replicate 1;  
PRO: site S replicate 1; MISEQ: site W replicate 1.

4b. Sample A and B for data in PRO, PGM, 454, ILMN site W all data.
Figure 5. ILMN site W all data.
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Errata

Erratum: Multi-platform assessment of transcriptome profiling using 
RNA-seq in the ABRF next-generation sequencing study 
Sheng Li, Scott W Tighe, Charles M Nicolet, Deborah Grove, Shawn Levy, William Farmerie, Agnes Viale, Chris 
Wright, Peter A Schweitzer, Yuan Gao, Dewey Kim, Joe Boland, Belynda Hicks, Ryan Kim, Sagar Chhangawala, Nadereh Jafari, 
Nalini Raghavachari, Jorge Gandara,, Natàlia Garcia-Reyero, Cynthia Hendrickson, David Roberson, Jeffrey Rosenfeld, Todd Smith, 
Jason G Underwood, May Wang, Paul Zumbo, Don A Baldwin, George S Grills & Christopher E Mason
Nat. Biotechnol. 32, 915–925 (2014); published online 24 August 2014; corrected after print 10 October 2014; doi:1038/nbt.2972

In the version of this article initially published, author Jeffrey Rosenfeld’s middle initial “A” was omitted. The error has been corrected in the HTML 
and PDF versions of the article.
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