MASS SPECTROMETRY BASED METABOLOMICS

Pavel Aronov

ABRF2010

Metabolomics Research Group March 21, 2010

Types of Experiments in Metabolomics

targeted

- Number of analyzed metabolites is limited by the number of available **standards**
- Absolute quantitation of metabolites (nM, mg/mL)
- Selective MS detectors (quadrupoles, triple quadrupoles)

non-targeted

- •Number of analyzed metabolites is limited by capacity of *analytical instrumentation*
- *Relative quantitation* of metabolites (fold)
- •Scanning MS detectors (ion trap, TOF, FT)

Separation Techniques

- Direct injection/infusion (primarily lipidomics)
- Capillary Electrophoresis

(Publications by Tomoyoshi Soga and others)

- Gas Chromatography
- Liquid Chromatography

GC-MS vs LC-MS

GC

- -Derivatization usually required (except VOC)
- -Upper mass limit at ~400-500 amu
- -Preferred for small polar metabolites (primary metabolism)
- -Relatively high peak capacity
- -El ion source (extensive fragmentation, reproducible, libraries available
- -CI ion source (little fragmentation, advantage for accurate mass measurement

A her concerning

LC

- -No derivatization usually required
- -Upper mass is limited by column permeability
- -Preferred for bigger molecules (e.g. some lipids, secondary metabolites)
- -Relatively low peak capacity
- **-ESI ion source** (ionic compounds, ion suppression)
- -APCI ion source (less ion suppression and more amenable for non polar compounds than ESI but usually lower sensitivity)

MS

GC-MS Analysis of Metabolites: Overview

- 50 600 (400) amu mass range mono- and disaccharides, amino acids, fatty acids (mostly primary metabolites)
- Derivatization usually required
- Metabolite libraries are available due to instrumentindependent and well understood nature of electron ionization that generates extensive fragmentation and information reach spectra
- Advantageous for flux analysis using ¹³C labeling

GC-MS Analysis of Metabolites: Workflow

- Sample preparation:
- -depletion of abundant metabolites (urine: urease treatment)
- -homogenization, extraction and lyophilization
- -derivatization: oximation (sugars), and silylation
- GC-MS analysis
- -disposable glass liners are preferred to eliminate carry-over
- -retention index (RI) standards can be used to aid identification
- Deconvolution of mass spectra using libraries
- -AMDIS or BinBase (freeware)

GC-MS Profile of Urine

LC-MS Analysis of Metabolites: Overview

- 100-2000 amu mass range peptides, lipids, secondary plant metabolites
- No derivatization required
- Low peak capacity
 especially for polar compounds
- Metabolite mass spectral libraries are incomplete instrument-dependent nature of collision induced dissociation, insufficient fragmentation
- Ultra-high resolution MS (FT ICR, Orbitrap, TOF) may aid identification

LC-MS Analysis of Metabolites: Workflow

- Sample preparation:
 - -extraction or protein precipitation, lyophilization, filtration
- LC-MS analysis
 - -combination of ionization modes is preferred (ESI, APCI, +, -)
 - -reverse phase LC for non-polar metabolites and hydrophilic interaction chromatography (HILIC) for polar metabolites
- Detection of spectral "features" (ions) using metabolomics software
 - -freeware XCMS and MZmine
- Identification based on retention time, accurate mass, and fragmentation

RP-LC-MS Profile of Plasma

HILIC-LC-MS Profile of Urine

RP and HILIC

Combination of Separation Modes and Ionization Techniques

Separation modes: Reversed phase and HILIC Ionization modes: ESI and APCI or combined ESI/APCI (MM) Ionization polarities: + and -

Nordstrom A. et al, Anal Chem, 2008.

Bottlenecks in Metabolomics

Although modern MS is capable of fast polarity switching and implements combined ion sources, there are always some data quality trade-offs for using universal approaches (less points per peak, lower ionization yield)

throughput (3 %) vs. post-acquisition bottlenecks (5 + 35 + 22 + 14 = 76 %)

Identification in Metabolomics

	Proteomics	Metabolomics
Identification	Well established	Under development
	sequencing , , , , , , , , , , , , , , , , , , ,	Huge diversity of structures, NMR often required
	PTMs still a challenge	Moderate success with mass spectral libraries

- •Peptide structure is sequential, MS/MS experiments are usually sufficient (ion traps).
- •Typical CID MS/MS does not break all bonds in **metabolites**; <u>accurate mass measurements</u> provide more information than MS/MS

MASS SPECTROMETRY

Low resolution MS/MS

m/z 132

 $C_{6}H_{14}NO_{2}$ $C_{5}H_{14}N_{3}O$ $C_{9}H_{10}N$ $C_{5}H_{10}NO_{3}$ $\underline{C_{8}H_{6}NO}$ $C_{4}H_{6}NO_{4}$

 Typical CID MS/MS does not break all bonds in metabolites; accurate mass measurements provide more information than MS/MS

High Resolution

High Resolution: R = 561/0.06 ~ 9,000

TOF: 7,000-50,000 Orbitrap: 10⁴-10⁵ FT ICR: 10⁵-10⁶

Nominal Mass Resolution (<1000) $R = 561/0.8 \sim 700$

Quadrupoles and ion traps, some TOFs

Determination of Elemental Composition from Accurate Mass

```
<sup>1</sup>H
<sup>12</sup>C
<sup>12</sup>L
<sup>12</sup>L
<sup>12</sup>L
<sup>12</sup>L
<sup>12</sup>L
<sup>14</sup>N
<sup>14</sup>N
<sup>14</sup>N
<sup>14</sup>N
<sup>15</sup>L
<sup>15</sup>L
<sup>16</sup>O
```

What is 28 u? N_2 (2 x 14 u), CO (12 u + 16 u) or C_2H_4 (2 x 12 u + 4 x 1 u)?

What is 28.0313 u? [high accuracy] C_2H_4 (2 x 12.0000 u + 4 x 1.0078 u)

Kind T. et al, BMC Bioinformatics, 2007

Identification based on accurate mass

Further identification steps

- MS/MS experiments (library search or de novo)
- Chemical derivatization or H/D exchange to map functional groups
- Comparison with pure standards
- Other techniques: NMR and X-ray crystallography (stereochemistry)

Data Processing and Statistics

Proprietary Software

Most of MS companies have software packages for metabolomics data analysis

Freeware Software

XCMS and METLIN database MZmine

Data output: XCMS

XCMS: http://masspec.scripps.edu/xcms/xcms.php

Support high resolution data and MS/MS data (XCMS^2)

http://metlin.scripps.edu/metabo_list.php?mass_min=362.02&mass_max=362.32

Data output: METLIN

References

Overview:

http://fiehnlab.ucdavis.edu/

http://masspec.scripps.edu/index.php

Metabolomics: Methods and Protocols http://www.springerprotocols.com/Book Toc/doi/10.1007/978-1-59745-244-1

Acknowledgements

UC Davis

- -Bruce Hammock
- -Robert Weiss
- -Katja Dettmer
- -Vladimir Tolstikov
- -Oliver Fiehn

Stanford

- -Allis Chien
- -Tim Meyer
- -Mike Snyder

