Metabolomics Research Group

Current Members:

Amrita K Cheema: Georgetown University

John M Asara: BIDMC/Harvard Medical School

Thomas Neubert : NYU (EB Liaison)

Chris Turck: Max Planck Institute (Chair)

Former Members

William Wikoff: UC Davis

Vladimir Tolstikov: Eli Lilly

Pavel Aronov: Stanford University

Future Members:

Andrew Patterson : Penn State University

Communication • Education

Stephen Brown : University of Michigan

MRG 2013 Inter-Laboratory Study

Design a study that resembles a typical metabolomics experiment

Participants asked:

- > to identify quantitative differences between two groups of samples
- without (non-targeted) or with (targeted) spiked-in compound information

International representation of MRG study respondents

Participating Countries

US Canada England Scotland Ireland Germany Spain Italy **Netherlands** Australia Japan South Korea China Singapore

Initial solicitation of interest from metabolomics labs, ABRF members, etc. by email.

~25% USA & Canada ~35% Europe ~25% Asia

RESOURCE Facilities Research • Technology Communication • Education

Association

Four principles of compound selection

- 1. Most of the spiked-in compounds should be <u>endogenous with known</u> <u>concentrations in NIST plasma</u>.
- 2. Compounds should be selected such that they are well <u>distributed in</u> <u>terms of ability to analyze by a particular technique</u>. For example, some compounds should be detectable with ESI+, whereas others should be detectable with ESI-, EI or APCI.
- 3. Compounds should be selected with a <u>range of difficulty of</u> <u>identification, regardless of technique used</u>.
- 4. <u>High purity compounds</u> should be chosen.

New NIST plasma standard is an ideal matrix for inter-laboratory studies

- Analyzed and validated by several groups on multiple analytical platforms.
- Can be used for comparisons over long periods of time.

NIST has generously donated the plasma that was used for the MRG study.

Lyophilization for sample preparation: Comparison to frozen sample

Total ion chromatogram of lyophilized sample superimposes with non-lyophilized sample.

Study Design

Ratio of A and B = [0.68,0.81], with p < 0.01 after adjusting for endogenous plasma concentration

Enough material to send to approximately 100 participants. Limitation is the amount of NIST plasma available.

Research • Technology Communication • Education

Expected Concentrations of 17 Spiked Metabolites (Adjusted Based on Endogenous Plasma Concentration)

Expected Concentrations of 17 Spiked Metabolites in Plasma Study Samples

		Spiked Concentration (μM)		Endogenous Concentration (µM)	POS Mode		NEG Mode	
Substance Name	MW	Sample A	Sample B		Ratio A/B		Ratio A/B	
Sarcosine	89.10	10	20	Probably Negligible	0.50	И		
Betaine	117.15	50	100	33-88	[0.62,0.73]	Ы		
Urea	60.06	4000	8000		0.50	Ы		
Taurine	125.15	50	100	55-162			[0.68,0.81]	Ы
Nicotinic acid (niacin)	123.11	50	100	49-53	[0.66,0.67]	Ы		
Creatine	131.14	50	100	30-55	[0.62,0.68]	Ы		
Suberic acid	174.20	5	10	3.6			0.63	Ы
Quinolinic acid	167.12	3	6	0.47			0.54	Ы
Acetaminophen	151.06	5	20	Dose Dependent	0.25	И		
Acetylcarnitine	203.12	16	8	6	1.57	7		
Caffeine	194.08	8.50	48.50	Dose Dependent 2-10mg/L	0.18	Ы		
Creatinine	113.06	69.98	9.98	70	1.75	7		
DL-indole-3-lactic acid	205.07	4.2	1.2	2.8			1.75	R
Indoxyl sulfate	213.01	2	18		0.11	Ы		
L-arginine	174.11	3.7	48.7	80	0.65	Ы		
L-isoleucine	131.09	54.5	4.5	60-80	[1.59,1.78]	7		
Xanthosine	284.08	7.00	2	5			1.71	7

Urea and Indoxyl sulfate were not detected by any of the participating laboratories.

MRG Member Results

		MRG M1	MRG M2	MRG M3			
Substance	Expected Ratio A/B	Observed Ratio A/B					
Sarcosine	0.5	1.08	0.97	1.38	1.40	1.00	
Betaine	[0.62,0.73]	3.53	0.81	2.92	1.84	0.59	
Urea	0.5						
Taurine	[0.68,0.81]	0.84	0.28		0.35	3.99	
Nicotinic acid (niacin)	[0.66,0.67]	5.11	0.28	5.52	9.38	4.08	
Creatine	[0.62,0.68]	0.79	0.50	1.54	2.07	0.87	
Suberic acid	0.63	0.17	1.19		0.19	0.53	
Quinolinic acid	0.54	0.37	0.90			0.38	
Acetaminophen	0.25	8.78	8.06	8.68	8.09		
Acetylcarnitine	1.57	0.72	0.43	0.62	0.48		
Caffeine	0.18	0.78	0.15	0.29	0.20	1.69	
Creatinine	1.75	1.61	1.78	1.55	1.65	0.90	
DL-indole-3-lactic acid	1.75	0.42	0.51		0.20	1.12	
Indoxyl sulfate	0.11						
L-arginine	0.65	0.17	2.10	1.71	1.99	1.26	
L-isoleucine	[1.59,1.78]	0.86	0.59	0.75	0.49	0.47	
Xanthosine	1.71	0.16	0.60		0.12	0.61	

Urea and Indoxyl sulfate were not detected by any of the participating laboratories.

Results Reporting Format

For each compound:

- m/z, ion mode (mass spectrometry)
- Molecular formula (or multiple formulas if ambiguous)
- Fold-change between groups
- Statistical metric for observed difference
- Compound identity

Techniques Used

- Total Participants (including MRG members) = 17
 - Total Platforms Used = 23
 - Quantitative Data Returned = 11 (73.3%)

Performance Measures

Detection of Spiked Metabolites

Right Trend for Quantitation

Opposite Trend for Quantitation

Conclusions

- LC-MS was the most commonly used platform to analyze study samples.
- For the LC-MS platforms, the metabolite detection accuracy was dependent on the protocol used for sample processing as well as the analytical conditions (column chemistry, mobile phase, etc.).
- The quantification trends were quite consistent for the laboratories that used LC-MS platforms.
- Quantitative data for Taurine, Suberic acid, Caffeine, and Creatinine were most consistent across laboratories and analytical platforms.
- Quantification of metabolites with high endogenous plasma concentrations turned out to be the most challenging.
- A combination of platforms increased the accuracy and overall rate of detection.
 - Average Detection Rate is 31.76%.
 - Average Detection Rate is 22.59% for untargeted and 39.71% for targeted methods, a 75% increase in detection rate.
 - Using 2 different platforms, the detection rates were 52.9% and 64.7%, respectively.
 - Using different separation systems in conjunction with MS-based platforms resulted in the highest detection rate (88.2%).